
Postprint, July 2019

Comprehensive Process Drift Detection
with Visual Analytics

Anton Yeshchenko1r0000�0002�5346�8358s, Claudio Di Ciccio1r0000�0001�5570�0475s,
Jan Mendling1r0000�0002�7260�524Xs, and Artem Polyvyanyy2r0000�0002�7672�1643s

1 Vienna University of Economics and Business, Vienna, Austria
{anton.yeshchenko,claudio.di.ciccio,jan.mendling}@wu.ac.at

2 The University of Melbourne, Parkville, VIC, 3010, Australia
artem.polyvyanyy@unimelb.edu.au

Abstract. Recent research has introduced ideas from concept drift into process
mining to enable the analysis of changes in business processes over time. This
stream of research, however, has not yet addressed the challenges of drift cate-
gorization, drilling-down, and quantification. In this paper, we propose a novel
technique for managing process drifts, called Visual Drift Detection (VDD), which
fulfills these requirements. The technique starts by clustering declarative process
constraints discovered from recorded logs of executed business processes based
on their similarity and then applies change point detection on the identified clus-
ters to detect drifts. VDD complements these features with detailed visualizations
and explanations of drifts. Our evaluation, both on synthetic and real-world logs,
demonstrates all the aforementioned capabilities of the technique.

Keywords: Process mining · Process drifts · Declarative process models

1 Introduction

The availability of data has extended conceptual modeling as a research field of manually
created models with automatic techniques for generating models from data. Process min-
ing is one of these recent extensions that is concerned with providing transparency of how
the businesses operate based on real-world event data. Process discovery algorithms have
proven to be highly effective in generating process models from data of stable behavior [1].
However, many processes are not stable but are subject to various forms of change over
time. In data mining, such change over time is called a drift. A drift is a concept that
process mining has addressed only to a limited extent so far.

Recent works have focused on integrating ideas from research on concept drift from data
mining into process mining [7,12,22,26,18]. The arguably most advanced technique is pro-
posed in [14], where Maaradji et al. present a framework for detecting process drifts based
on tracking behavioral relations over time using statistical tests. A strength of this approach
is its statistical soundness and ability to identify a rich set of drifts, which makes it a suit-
able tool for verifying if an intervention at a known point in time has resulted in an assumed
change of behavior. However, in practice, the existence of different types of drifts in a busi-
ness process is not known beforehand, and the analysts are interested in distinguishing what
has and what has not changed over time. This need calls for a more fine-granular analysis.

In this paper, we present a novel technique for process drift detection, called Visual
Drift Detection (VDD), which addresses the identified research gap. More specifically,

2 A. Yeshchenko, C. Di Ciccio, J. Mendling, A. Polyvyanyy

our technique facilitates the visual interpretation [25] of process drifts founded in the
formal rigor of temporal logic of DECLARE constraints [2,10] and time series analysis [6].
Key strengths of our technique are clustering, i.e., grouping, of declarative behavioral
constraints that exhibit similar trends of changes over time and automatic detection of
changes, i.e., drift points. These features allow us to detect and explain drifts that would
otherwise sneak undetected by other techniques. The paper presents an evaluation that
demostrates these capabilities.

The remainder of the paper is structured as follows. Section 2 illustrates the problem of
process drift detection and formulates five requirements for its analysis. Then, Section 3
states the preliminaries. Section 4 presents our drift detection technique, while Section 5
evaluates the technique using synthetic and real-world benchmark data. Finally, Section 6
summarizes the results and concludes with an outlook on future research.

2 Process Drift Analysis

This section discusses and motivates the problem of process drift analysis (Section 2.1),
and specifies requirements for its solution (Section 2.2).

2.1 Motivating example

Various logs of real-world business process executions have been recently made available
for research. As an example, consider the log of the Italian process for handling the collec-
tion of road ticket fines [16]. This process starts with a ticket being issued. In the best case,
which covers a third of all the cases, the fine is directly paid. In roughly half of the other
cases, a fine notification is sent to the accused driver. Some of these drivers appeal, while
some ignore the notice, such that a considerable share of cases sees a penalty being added.
Partially, these are further appealed, paid or eventually sent for credit collection. The
authority is now interested in this question: Has the process of handling road ticket fines,
specifically for the accused drivers, changed over time, and which parts of the process
now work differently than in the past?

The described problem is typical for many domains. The objective is to explain the
change of the system’s behavior in a dynamically changing non-stationary environment
based on some hidden context [11]. In this setting, a concept drift is a change of the
conditional distribution of the output given a specific input. Research in data mining and
machine learning distinguishes techniques for uncovering drifts in an online or offline
manner [23], with applications in prediction and fraud detection.

In process mining, process drift is a notion for analyzing changes of business processes
over time. Classical process mining techniques have implicitly assumed that logs are not
sensitive to time in terms of systematic change [1]. Sampling-based techniques explicitly
build on this assumption for generating a process model with a subset of the event log
data [5]. A significant challenge for adopting concept drift for process mining is to represent
behavior in a time-dependent way. The approach reported in [14] uses causal dependencies
and tracks them over time windows. The specific challenge is to not only spot a drift but
also to classify it. Figure 1 shows established drift classes from data mining. Next, we use
the example of the road ticket fines process to illustrate the potential causes of drifts.

Comprehensive Process Drift Detection with Visual Analytics 3

Fig. 1: Different types of drifts, cf. Fig. 2 in [11]; note that an outlier is not a drift.

A sudden drift is typically caused by an intervention. A new law could eliminate the right
of an accused driver to lodge a second appeal. As a result, we would not see second appeal
events in our log in the future. An incremental drift might result from a stepwise introduc-
tion of self-service terminals for paying fines at toll stations. A gradual drift may yield from
a new policy to show less indulgence with drivers who marginally violated speeding rules.
Finally, a reoccurring drift might result from specific measures taken in the holiday season
from June to August, like flagging down drivers directly on the highway to have them pay
right on the spot. Existing process mining techniques support these types of drifts partially.

The following are four cases from the Italian road ticket fines log1:

1. 10 Jan. 2011: xLodging ticket,Appeal,Appeal,Payment,Close tickety
2. 15 Jan. 2011: xLodging ticket,Appeal,Appeal,No payment,Close tickety
3. 04 Feb. 2011: xLodging ticket,Appeal,Payment,Close tickety
4. 06 Feb. 2011: xLodging ticket,Appeal,No payment,Close tickety

We observe a sudden drift here due to the introduction of a new law. After 4 Feb. 2011, it is
not possible to lodge a second appeal. Therefore, in formal terms, from case 3 onwards, the
rule that multiple appeals occur before the ticket closes abruptly decreases in confidence.
In DECLARE, we denote this rule as ALTERNATERESPONSEpAppeal,Close ticketq.

2.2 Requirements

Based on the analysis of process change scenarios from the literature, like the road ticket
fines discussed previously, we identified five requirements for process drift analysis:

R1. Identify drifts: The points at which a business process undergoes drifts should be
identified based on precise criteria;

R2. Categorize drifts: Process drifts should be according to their types;
R3. Drill down and roll up analysis: Process drifts should be characterized at different

levels of granularity, e.g., drifts that concern the entire process or only its parts;
R4. Quantitative analysis: Process drifts should be associated with a degree of change,

a measure that quantifies to which extent the drift entails a change in the process;
R5. Qualitative analysis: Process drifts should convey changes in a business process to

process analysts effectively.

Table 1 provides an overview of the state-of-the-art methods to process drift analysis with
the reference to the requirements. Note that collectively these methods implement all the
requirements, whereas each individual methods addresses only a subset thereof.

Approaches like ProDrift [14] and Graph Metrics on Process Graphs [22] put an em-
phasis on requirement R1. The evaluation of ProDrift in [14] shows that two types of

1
https://doi.org/10.1007/s00607-015-0441-1

https://doi.org/10.1007/s00607-015-0441-1

4 A. Yeshchenko, C. Di Ciccio, J. Mendling, A. Polyvyanyy

drifts are found with high accuracy (sudden and gradual drifts), hence partly addressing
requirement R2; note that the authors report high sensitivity of the technique to the choice
of the method parameters. The approach relies on the automated detection of changes in
business process executions, which are analyzed based on causal dependency relations
studied in process mining [24]. The Tsinghua Process Concept Drift Detection approach
(TPCDD) [26] uses two kinds of behavioral relationships (direct succession and weak
order). The approach computes those relations on every trace, so as to later identify the
change points through their merge and clustering. The sole type of drift that TPCDD
detects is the sudden drift.

Table 1: Process drift detection in process mining.

Approach R1 R2 R3 R4 R5

ProDrift [14,18] + +/- - - -

TPCDD [26] + - - - -

Process Trees [17] + - - - +

Performance Spectra [7] - - + - +

Comparative Trc. Clustering [12] - - - + +

Graph Metrics On Proc.Graphs [22] + - - + +

VDD approach (this paper) + + + + +

The other approaches empha-
size requirement R5. The ap-
proach based on Process Trees
uses ProDrift for drift detection,
and aims at explaining how sud-
den drifts influence behavior of
the process [17]. To this end,
process trees for pre-drift and
post-drift sections of the log are
built and used to explain the
change. The Performance Spec-
tra approach [7] focuses on drifts
that show seasonality. The technique filters the control-flow and visualizes identified flow
patterns. It is evaluated against a real-world log, in which recorded business processes show
year-to-year seasonality. A strength of the Comparative Trace Clustering approach [12]
is its ability to include non-control-flow characteristics in the analysis. Based on these
characteristics, it partitions and clusters the log. The differences between the clusters, then,
indicate the quantitative change in the business processes, refer to requirement R4. The
Graph Metrics on Process Graphs approach [22] discovers a first model, called a reference,
using the Heuristic Miner on a section of the log [1]. Then, it discovers models for other
sections of the log and uses graph metrics to compare them with the reference model. The
technique interprets significant differences in the metrics as drifts. The reference model
and detection windows get updated, once a drift is detected.

This discussion, summarized in Table 1, witnesses that none of the state-of-the-art
methods addresses all the five requirements. Thus, the work at hand, to address the gap.

3 Preliminaries

In this section, formal preliminaries of the approach are given. Section 3.1 discusses
DECLARE specification as the main body of process mining research we build upon.
Section 3.2 describes clustering and change point detection methods, which are the main
instruments of our approach.

An event log L (log for short) is a collection of recorded traces that correspond to
process executions. In this paper, we abstract the set of activities of a process as a finite
non-empty alphabetΣ�ta,b,c,...u, and we define a trace as a finite sequence of activities
ai P σ,1 ¤ i ¤ n. Case 1 of the road ticket process from Section 2.1 is an example of
a trace. Cases 1-4 are an example of an event log. In the following examples, we shall
also resort on the string-representation of traces (i.e., σ � a1a2 ���an) defined over Σ.

Comprehensive Process Drift Detection with Visual Analytics 5

Table 2: Example DECLARE constraints.

Constraint Explanation Examples

ATMOSTONEpaq If a occurs, then it occurs at most once Xbcc Xbcac �bcaac �bcacaa

RESPONSEpa,bq If a occurs, then b occurs eventually after a Xbaabc Xbcc �caac �bacc

ALTERNATERESPONSEpa,bq If a occurs, then b occurs eventually afterwards, and
no other a recurs in between

Xcacb Xabcacb �caacb �bacacb

CHAINRESPONSEpa,bq If a occurs, then b occurs immediately afterwards Xcabb Xabcab �cacb �bca

PRECEDENCEpa,bq If b occurs, then a must have occurred before Xcacbb Xacc �ccbb �bacc

ALTERNATEPRECEDENCEpa,bq If b occurs, then a must have occurred before and no
other b recurs in between

Xcacba Xabcaacb �cacbba �abbabcb

CHAINPRECEDENCEpa,bq If b occurs, then a occurs immediately beforehand Xabca Xabaabc �bca �baacb

NOTSUCCESSIONpa,bq a occurs if and only if b does not occur afterwards Xbbcaa Xcbbca �aacbb �abb

Event log L is a multiset of traces, as the same trace can be repeated multiple times in
the same log: denoting the multiplicitym¥0 as an exponent of the trace, we have that
L�tσm1

1 ,σm2
2 ,...,σmN

N u (if mi� 0 for some 1¤ i¤N we shall simply omit σi). The
size of the log is defined as |L|�

°N
i�1mi, i.e., the sum of its traces’ multiplicities. For

example, the size of the Italian help desk log is 150370. A sub-log L1�L of L is a log
L1�tσ

m1

1
1 ,σ

m1

2
2 ,...,σ

m1

N

N u such thatm1
i¤mi for all 1¤ i¤N . A log consisting of cases

1-3 from the example logL in Section 2.1 is a sub-log ofL.

3.1 DECLARE modeling and mining

A declarative process specification represents the behavior of a process by means of
constraints, i.e., temporal rules that specify the conditions under which activities may,
must, or cannot be executed. In this paper we focus on DECLARE, one of the most
well-established declarative process modeling languages to date [2].

DECLARE provides a standard library of templates (repertoire [20,9]), i.e., constraints
parametrized over activities. Examples of DECLARE constraints are RESPONSEpa,bq
and CHAINPRECEDENCEpb,cq. The former constraint applies the RESPONSE template
on tasks a and b, and states that if a occurs then b must occur later on within the same
trace. In this case, a is named activation, because it is mentioned in the “if” clause, thus
triggering the constraint, whereas b is named target, as it is in the consequent clause [9].
CHAINPRECEDENCEpb,cq asserts that if c (the activation) occurs, then b (the target)
must have occurred immediately before. Given an alphabet of activities Σ, we denote
the number of all possible constraints that derive from the application of DECLARE
templates to all activities inΣ as #cns�OpΣ

2q [9]. For the Italian road ticket fine log,
#cns�1584. Table 2 shows some of the templates of the DECLARE repertoire, together
with the examples of traces that satisfy (X) or violate (�) them.

Declarative process mining tools can measure to what degree constraints hold true in a
given event log [15]. To that end, diverse measures have been introduced. Among them,
we consider here support and confidence [10]. Their values range from 0 to 1. In [10],
the support of a constraint is measured as the ratio of times that the event is triggered
and satisfied over the number of activations. Let us consider the following example event
log: L�tσ4

1 ,σ
1
2 ,σ

2
3u, having σ1�baabc, σ2�bcc, and σ3�bcba. The size of the log is

4�1�2�7. The activations of RESPONSEpa,bq that satisfy the constraint amount to 8

6 A. Yeshchenko, C. Di Ciccio, J. Mendling, A. Polyvyanyy

because two a’s occur in σ1 that are eventually followed by an occurrence of b, and σ1
has multiplicity 4 in the event log. The total amount of the constraint’s activations inL is
10 (see the violating occurrence of a in σ3). The support thus is 0.8. By the same line of
reasoning, the support of CHAINPRECEDENCEpb,cq is 7

8 �0.875 (notice that in σ2 only
one of the two occurrences of c satisfies the constraint). To take into account the frequency
with which constraints are triggered, confidence scales support by the ratio of traces in
which the activation occurs at least once. Therefore, the confidence of RESPONSEpa,bq is
0.8� 6

7�0.69 because a does not occur in σ2. As b occurs in all traces, the confidence of
CHAINPRECEDENCEpb,cq is 0.875.

3.2 Clustering and change point detection algorithms

In this paper, we focus on the analysis of time-series data. A time series is a sequence of
ordered data points xt1,t2,���,tdy�T PRd consisting of d PN� real values. Figure 3(f)
illustrates an example of time series. A multivariate time series is a set ofnPN� time series
D � tT1,T2,...,Tnu. We assume a multivariate time series to be piece-wise stationary
except for its change points.
In our approach, we take advantage of the following techniques.
Time series clustering is an unsupervised data mining technique for organizing data
points into groups based on their similarity [4]. The objective is to maximize data similarity
within clusters and minimize it across clusters. More specifically, the time-series clustering
is the process of partitioningD into non-overlapping clusters of multivariate time series,
C�tC1,C2,...,Cmu� 2D, with Ci�D and 1¤m¤n, for each i such that 1¤ i¤m,
such that homogeneous time series are grouped together based on a similarity measure. A
similarity measure simpT,T 1q represents the distance between two time series T and T 1

as a non-negative number. Time-series clustering is often used as a subroutine of other
more complex algorithms and is employed as a standard tool in data science for anomaly
detection, character recognition, pattern discovery, visualization of time series [4].
Change point detection is a technique to detect the points in which multivariate time
series exhibit changes in their values [6]. LetDj denote all elements ofD at position j,
i.e.,Dj�tT j

1 ,T
j
2 ,...,T

j
nu, where T j is a j-th element of time series T . The objective of

change point detection algorithms is to find kPN� changes inD, where k is previously
unknown. Every elementDj for 0 j¤k is a point at which the values of the time series
undergo significant changes. In Fig. 3(f), e.g., each vertical black dashed line is one of
the k � 9 change points. To detect change points, the search algorithms require a cost
function and a penalty parameter as inputs. The former describes how homogeneous the
time series is. It is chosen in a way that its value is high if the time series contains many
change points and low otherwise. The latter is needed to constrain the search depth. The
supplied penalty should strike a good balance between finding too many change points
and not finding any significant ones. Change point detection is a technique commonly
used in signal processing and, more in general, for the analysis of dynamic systems that
are subject to changes [6] .

4 Technique

In this section, we introduce the VDD approach. First, we derive a multivariate time
series from an event log, where each time series represents how the confidence values

Comprehensive Process Drift Detection with Visual Analytics 7

Slice
log

Mine
constraints

Extract
series

Cluster
series

Detect
change
points

Visualise
drifts

Event log Sub-logs
Constraint sets
with measures

Constraints
measures

(over time series)

Clustered
constraint
measures

Drift Maps
Drift Maps

and
Drift Charts

Step 1 Step 2 Step 3

Fig. 2: The VDD approach.

of some DECLARE constraint evolve over time. We prefer confidence over support to
prevent that sporadically occurring activities bias our detection algorithms. Then, we
cluster sub-sets of time series to group together the constraints that expose a similar trend
in their confidence value. Next, using change point detection techniques, we identify the
process drifts, i.e., the points in which significant changes in the confidence of behavioral
rules occur. Finally, we assess and explain behavioral changes through visual diagrams
and numerical reports on drift metrics. Figure 2 illustrates the multi-step VDD approach.
Step 1: Mining DECLARE windows. In this step, we split the log into sub-logs. From
each sub-log, we mine the set of DECLARE constraints and compute their confidence.
Step 2: Slicing the DECLARE constraints space into time and behavior sub-spaces.
This step begins with the extraction of multi-variate time series that represent the trends
of the constraints’ confidence. Thereupon, we cluster those time series to find groups of
constraints that exhibit similar confidence trends (henceforth, behavior clusters). The step
ends by returning the detected change points both in the entire multi-variate time series
and in each cluster, so as to find overall and behavior-specific drifts, respectively.
Step 3: Explaining drifts. In the last step, we plot Drift Maps and Drift Charts to visually
identify and characterize the detected drift. In the following, we detail those steps.

4.1 Mining DECLARE windows

The first step takes as input a logL, and two additional parameters (winsize and winstep).
It returns a multivariate time series D based on the confidence of mined DECLARE
constraints.

First, we sort the traces in the event log L by the timestamp of their respective first
events. Thereupon, we extract a sub-log from L as a window of size winsize PN�, with
1¤winsize¤|L|. We subsequently shift the sub-log window by a given step (winstep PN�,
with 1¤winstep¤winsize). Notice that we have sliding windows if winstep winsize and
tumbling windows ifwinstep�winsize. Thus, the number of produced sub-logs is equal to:

#win�
Y
|L|�winsize�winstep

winstep

]
. Having winsize set to 5000 and winstep set to 2500, #win

amounts to 57 on the Italian road fine ticket log.
For every sub-logLj�L thus formed (1¤j¤#win), we check all possible DECLARE

constraints that stem from the activities alphabet of the log, amounting to #cns (see
Section 3.1). For each constraint iP1..#cns, we compute its confidence over the sub-log
Lj , namely Confi,j Pr0,1s. This generates a time series Ti�pConfi,1,...,Confi,#win

qP
r0,1s#win for every constraint i. In other words, every time series Ti describes the con-
fidence of all the DECLARE constraints discovered in the i-th window of the event log.
The multivariate time seriesD�tT1,T2,...,T#cnsu encompasses the full spectrum of all
constraints. Next, we detail the steps of slicing the DECLARE constraints and explaining
the drifts.

8 A. Yeshchenko, C. Di Ciccio, J. Mendling, A. Polyvyanyy

4.2 Slicing the DECLARE constraints space into time and behavior sub-spaces

The second step processes the previously generated multivariate time seriesD to derive
(i) a setC of clusters exhibiting similar confidence trends, and (ii) a set of kPN� change
points representing the process drifts.
Change point detection. To detect change points, we use the Pruned Exact Linear Time
(PELT) algorithm [13]. This algorithm performs an exact search, but requires the input
dataset to be of limited size. Our setup is appropriate as by design the length of the
multivariate time-series is limited by the choice of parameters winsize and winstep. Also,
this algorithm is suitable for cases in which the number of change points is unknown a
priori [6, p. 24], as in our case. We use the Kernel cost function, detailed in [6], which
is optimal for our technique, and adopt the procedures described in [13] to identify the
optimal penalty value.
Clustering time series of DECLARE constraints. By applying a change point detection
algorithm on the entire multivariate time-series, we are able to pinpoint the window (i.e.,
the sub-log) where overall behavior changes occur. However, the level of granularity
may be inappropriate as we could not single out the phenomena that are local to certain
behavioral rules. That would interfere with the accuracy of results. Therefore, we use time-
series clustering techniques [4] to group together similarly changing pockets of behavior of
the process. One time series describes how one constraint changes its confidence over time.
By clustering, we find all the time series that share similar trends of values, hence, we find
all similarly changing constraints. We use hierarchical clustering, as it is reportedly one
of the most suitable algorithms when the number of clusters is unknown [4]. As a result,
we obtain a partition of the multivariate time series of DECLARE constraint confidence
values into behavior clusters.

4.3 Explaining drifts

After clustering the behavior of the log and finding the change points, we expand the
classification of the types of drifts found in the literature by being able to identify, pinpoint,
and categorize the drifts within behavior clusters. We also allow for an assessment of how
erratic the clusters are by means of the novel measure described next.
Finding erratic behavior clusters. The behavioral changes in one cluster can be visually
depicted by a plot like that in Fig. 3(f). Thus, in order to find and pinpoint the most
interesting (erratic) behavior clusters, we define a measure inspired by the idea of finding
the length of a poly-line in a plot. The rationale is, straight lines denote a regular trend
and have the shortest length, whilst more irregular, wavy curves evidence more behavior
changes and their length is higher. We are, therefore, mostly interested in longer lines.

We compute our measure as follows. We calculate for all constraints i such that 1¤
i¤#cns the Euclidean distance δ : r0,1s�r0,1sÑR� between consecutive values in the
time series Ti�pTi,1,...,Ti,winsize

q, i.e., δpTi,j ,Ti,j�1q for every j s.t. 1¤j¤winsize. For
every time seriesTi, we thus derive the overall measure∆pTiq�

°winsize�1
j�1 δpTi,j ,Ti,j�1q.

Thereupon, to measure how erratic a behavior cluster is, we devise the following measure:

ErtcpCq�

|C |̧

j�1

a
1�p∆pTiq�#winq2 (1)

Comprehensive Process Drift Detection with Visual Analytics 9

The most erratic behavior cluster has the highest Ertc value.
Visual drift classification. We enable the visual identification of the patterns illustrated
in Fig. 1 with a graphical representation that we name Drift Maps: they depict clusters and
their constraints’ confidence measure evolution along the time series, together with the
drift points. We allow the user to inspect every single cluster and its drifts in dedicated
diagrams that we name Drift Charts.

Drift Maps, such as those illustrated in Fig. 3(a) or Fig. 4(b), plot all drifts data on a
two-dimensional plane. The visual representation we adopt is inspired by [25]. The x-axis
is the time axis, while every constraint corresponds to a point along the y-axis. We add
vertical lines to mark the identified change points, i.e., drift points, and horizontal lines
to demark clusters. Constraints are sorted by the similarity of the confidence trends. The
values of the time series are represented through the plasma color-blind friendly color
map [25], from blue (low peak) to yellow (high peak).

To analyze the time-dependent trend of specific clusters, we build Drift Charts, such as
those depicted in Fig. 3(f) or Fig. 4(c). They have time on the x-axis and average confidence
of the constraints in a cluster on the y-axis. We add vertical lines as in Drift Maps.

Drift Maps permit the users to have a global picture of the clusters and of the process
drifts. Drift Charts allow for a visual categorization of the drifts according to the classifica-
tion introduced in [11] (Fig. 1). The following section demonstrates applications of this
visual-aided approach on synthetic and real-world logs.

5 Evaluation

This section presents our evaluation setup, its results on detecting and explaining drifts,
and a discussion of the results.

5.1 Evaluation setup

Table 3: Event logs used in the evaluation.

Origin Event log Related work

Synthetic ConditionalMove ProDrift 2.0 [18]

Synthetic ConditionalRemoval ProDrift 2.0 [18]

Synthetic ConditionalToSequence ProDrift 2.0 [18]

Synthetic Loop ProDrift 2.0 [18]

Real-world Italian help desk1 Process Trees [17]

Real-world BPI20113 ProDrift 2.0 [18]

We evaluate our approach both on syn-
thetic and real-world event logs.2,3,4 We
also compare the obtained results with
the state-of-the-art methods. Table 3 sum-
marizes the event logs used in the eval-
uation and indicates related work which
used these logs. To discover DECLARE
constraints, we used MINERful5 because
of its high performance [10]. We opted for
the ruptures python library6 for change point identification. We used the scipy library7

for the clustering of time-series, including the hierarchical clustering. By experimenting
with the clustering algorithm, we tuned the parameters to attain the best outcome, such
as the weighted method for linking clusters (distance between clusters defined as the

2
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb

3
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07

4
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54 (preprocessed as in [18])

5
https://github.com/cdc08x/MINERful

6
https://github.com/deepcharles/ruptures

7
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://github.com/cdc08x/MINERful
https://github.com/deepcharles/ruptures
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html

10 A. Yeshchenko, C. Di Ciccio, J. Mendling, A. Polyvyanyy

(a) ConditionalMove (b) ConditionalRemoval (c) ConditionalToSequence

(d) Loop (e) Loop, drifts by cluster (f) Loop, most erratic cluster

Fig. 3: Evaluation results on synthetic logs.

average between individual points), and the correlation metric (to find individual distances
between two time-series). To enhance Drift Map visualizations, we sort the time-series of
each cluster with the mean squared error distance metric. We implemented our approach
in Python 3. Its source code is publicly available.8

5.2 Detecting drifts

To demonstrate the accuracy with which our technique detects drifts, we first test it on
synthetic data in which drifts were manually inserted, to show that we detect drifts at the
points in which they occur. Thereafter, we compare our results with the state-of-the-art
algorithm ProDrift [18] on real-world event logs.
Synthetic data. Ostovar et al. [18] published a set of synthetic logs that they altered to
artificially include drifting behavior: ConditionalMove, ConditionalRemoval, Condition-
alToSequence, and Loop.9 Figure 3 illustrates the results of the application of the VDD
technique on these logs. By measuring precision as the fraction of correctly identified
drifts over all the ones retrieved by VDD and recall as the fraction of correctly identified
drifts over the actual ones, we computed the F-score (harmonic mean of precision and
recall) of our results for each log. Using the default settings and no constraint set clustering,
we achieve the F-score of 1.0 for logs ConditionalMove, ConditionalRemoval, Condi-
tionalToSequence, and 0.89 for the Loop log. When applying the cluster-based change
detection for the Loop log, we achieve the F-score of 1.0. The Drift Map for the Loop log

8
https://github.com/yesanton/Process-Drift-Visualization-With-Declare

9
http://apromore.org/platform/tools

https://github.com/yesanton/Process-Drift-Visualization-With-Declare
http://apromore.org/platform/tools

Comprehensive Process Drift Detection with Visual Analytics 11

(a) Overall change points (b) Drifts by cluster (c) Most erratic cluster
Fig. 4: BPIC2011 hospital log VDD visualizations.

(a) Overall change points (b) Drifts by cluster (c) Most erratic cluster

Fig. 5: Italian help desk log VDD visualizations.

is depicted in Fig. 3(e). In contrast to [18] we can see which behavior in which cluster
contributes to the drift. The Drift Chart in Fig. 3(f) illustrates the trend of confidence for
the most erratic cluster for the Loop log.
Real-world data. Figure 4(a) illustrates the Drift Map constructed for the BPIC2011
event log.3 As in [18], two drifts are detected towards the second half of the time span of
the log. However, in addition, our technique identifies drifting behavior at a finer-granular
level. Figure 4(b) shows the drifts pertaining to clusters of constraints. The trend of the
confidence measure for the most erratic cluster is depicted in Fig. 4(c).

Our technique correctly detects drifts in the Italian help desk log, by identifying the
same two drifts that were found by ProDrift [17], approximately in the first half and
towards the end of the time span. As illusrated by the VDD visualization in Fig. 5(a), in
addition we detected another sudden change in the first quarter. Following on that, we
analyzed the within-cluster changes (Fig. 5(b)) and noticed that the most erratic cluster
contains an outlier, as is shown by the spike in Fig. 5(c).

5.3 Explaining drifts

To better understand a particular drift, we further examine the constraints that participate
in the drift. Using the example of the Italian help desk log presented above, we examine the
most erratic behavior clusters’ drifts (calculated using Eq. (1)), shown in Table 4. In Fig. 6,
we present the most erratic examples of behavior, and in Table 5 we present the constraints
that describe that specific behavior after applying the constraint minimization algorithm.

12 A. Yeshchenko, C. Di Ciccio, J. Mendling, A. Polyvyanyy

Table 4: Italian help desk log
erratic clusters.

Drift number Ertc measure

without drift 89.000

9 780.041

11 328.881

14 293.887

10 292.712

13 289.103

7 232.401

4 196.012

15 171.012

16 166.111

Figure 6(a) shows an erratic behavior, which visually
corresponds to the reoccurring concept classification
from Fig. 1. Examining the constraints that constitute
this behavior, the analyst could conclude that in the dates
of the peak in Fig. 6(a) the activity Create SW anomaly
always had Take in charge ticket executed immediately be-
forehand, and otherwise in the other parts of the plot.
Also, she could conclude that before Create SW anomaly
the Assign seriousness activity was executed, and no other
Create SW anomaly occurred in between.

Figure 6(b) has four spikes, where Schedule intervention
occurred. Immediately before Schedule intervention, activ-
ity Take in charge ticket occurred. Also, Assign seriousness
occurred had to occur before Schedule intervention re-
curred. We notice, however, that this cluster shows outlier
behavior, due to its rare changes.

Finally, Fig. 6(c) depicts a gradual drift until June 2012, and the incremental
drift afterward. We notice that all constraints in the cluster have Wait either as an
activation (e.g., with ALTERNATERESPONSEpWait, closedq) or as a target (e.g., with
CHAINRESPONSEpTake in charge ticket,Waitq).

5.4 Discussion

Our method addresses all the five requirements for process drift detection presented
in Section 2.2 as follows:

R1 We evaluated our method with the synthetic logs showing its ability to identify drifts
precisely;

R2 We developed a visualization approach based on Drift Maps and Drift Charts for
classification of process drifts and have shown its effectiveness for real-world logs.
Our enhanced approach based on change point detection has yielded effective to
automatically discover the exact points at which sudden and reoccurring concept

Table 5: Italian ticket log constraints; including min, max, and mean confidence.

Cluster Constraint Activity 1 Activity 2 Min Max Mean

CHAINPRECEDENCE Take in charge ticket Create SW anomaly 0.0 100.0 42.8
9

ALTERNATEPRECEDENCE Assign seriousness Create SW anomaly 0.0 100.0 49.0

CHAINPRECEDENCE Take in charge ticket Schedule intervention 0.0 100.0 9.9
11

ALTERNATEPRECEDENCE Assign seriousness Schedule intervention 0.0 100.0 9.9

CHAINRESPONSE Take in charge ticket Wait 9.4 69.6 23.2

NOTSUCCESSION Resolve ticket Wait 10.0 77.2 26.0

NOTSUCCESSION Wait Assign seriousness 10.0 78.0 26.6

NOTSUCCESSION Wait Take in charge ticket 9.8 73.3 22.1

ALTERNATERESPONSE Assign seriousness Wait 9.0 72.3 23.8

ALTERNATERESPONSE Wait Closed 8.3 61.4 22.5

ALTERNATERESPONSE Wait Resolve ticket 8.3 61.4 22.8

4

ATMOSTONE Wait 9.8 68.6 25.1

Comprehensive Process Drift Detection with Visual Analytics 13

(a) Cluster 9, Ertc: 780.04 (b) Cluster 11, Ertc: 328.88 (c) Cluster 4, Ertc: 196.01

Fig. 6: Italian help desk log detailed clusters.

drifts occur. The indicative approximation of long-running progress of incremental
and gradual drifts was also found. Outliers were detected via time series clustering;

R3 Using clustering, Drift Maps, and Drift Charts, the method enables the drilling down
into (rolling up out) sections with a specific behavior (general vs. cluster-specific
groups of constraints);

R4 We introduced, and incorporated into our technique, a drift measure called Ertc that
quantifies the extent of the drift change;

R5 To further qualitatively analyze the detected drifts, VDD shows how the process
specification looks before and after the drift (as a list of DECLARE constraints, refer
to Table 5).

We found that the size of the window does not introduce significant difference in re-
sults for the automatic evaluation of the VDD, so we recommend using the number of
windows that will guide the visual search best, that is around 60 windows should be
produced for one graph. That means the recommended parameters are: winstep�

|L|
60�1

and winsize�2�winstep for smooth visual representation.

6 Conclusions

In this paper, we presented a visual technique for detecting and analyzing process drifts in
logs of executed business processes. First, the technique uses the MINERful technique
to discover declarative process constraints from logs. Second, it applies clustering and
change point detection methods over time series of characteristics of the discovered
constraints to detect process drifts (in parts of) business processes. The technique then
devises visualizations of the detected clusters and change points for the visual classification
of drifts. Finally, we presented a technique for evaluating and explaining process drifts.

We evaluated our technique both on synthetic and real-world data. On synthetic logs,
the technique achieved an average F-score of 0.96 and outperformed all the state-of-the-art
methods. On real-world logs, the technique managed to describe all types of process drifts
in a comprehensive manner. Also, the evaluation reported that our technique can identify
outliers of process behavior.

Limitations of the work at hand naturally give rise to future research. First, one can
study the problem of automatic classification of process drifts; we plan to use shapelets [3]
to solve this problem. Second, one can study how the use of other declarative process
constraints, e.g., the 4C spectrum [21] or branched DECLARE [8], impacts the effectiveness
of the technique. Third, an empirical evaluation with the potential users of the technique

14 A. Yeshchenko, C. Di Ciccio, J. Mendling, A. Polyvyanyy

can provide further insights for improving the usability of the approach. Finally, we argue
that, based on the identified past process drifts, and using time-series prediction algorithms,
one can predict future drifts to prepare for forecasted changes [19].

Acknowledgements. This work is partially funded by the EU H2020 program under
MSCA-RISE agreement 645751 (RISE BPM). Artem Polyvyanyy was partly supported
by the Australian Research Council Discovery Project DP180102839.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer (2016)
2. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between

flexibility and support. CS - R&D 23(2), 99–113 (2009)
3. Abanda, A., Mori, U., Lozano, J.A.: A review on distance based time series classification.

DMKD 33(2), 378–412 (2019)
4. Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering - a decade

review. IS 53(C), 16–38 (Oct 2015)
5. Bauer, M., Senderovich, A., Gal, A., Grunske, L., Weidlich, M.: How much event data is

enough? A statistical framework for process discovery. In: CAISE. pp. 239–256 (2018)
6. Charles Truonga, Laurent Oudre, N.V.: Selective review of offline change point detection

methods (2019), https://arxiv.org/abs/1801.00718
7. Denisov, V., Belkina, E., Fahland, D.: BPIC’2018: Mining concept drift in performance spectra

of processes (2018)
8. Di Ciccio, C., Maggi, F.M., Mendling, J.: Efficient discovery of target-branched Declare

constraints. Inf. Syst. 56, 258–283 (2016)
9. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redun-

dancies in declarative process models. IS 64, 425–446 (Mar 2017)
10. Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes.

ACM TMIS 5(4), 24:1–24:37 (2015)
11. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift

adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)
12. Hompes, B., Buijs, J.C.A.M., van der Aalst, W.M.P., Dixit, P., Buurman, H.: Detecting change

in processes using comparative trace clustering. In: SIMPDA 2015. pp. 95–108 (2015)
13. Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear compu-

tational cost. Journal of the American Statistical Association 107(500), 1590–1598 (2012)
14. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual drifts in

business processes from execution traces. IEEE TKDE 29(10), 2140–2154 (2017)
15. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process

models. In: CIDM. pp. 192–199. IEEE (2011)
16. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective

checking of process conformance. Computing 98(4), 407–437 (2016)
17. Ostovar, A., Leemans, S.J., La Rosa, M.: Robust drift characterization from event streams of

business processes (2018), https://eprints.qut.edu.au/121158/
18. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.: Detecting

drift from event streams of unpredictable business processes. In: ER. pp. 330–346 (2016)
19. Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting:

Towards proactive business process management. In: BPM. pp. 496–512. Springer (2018)
20. Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., Garcı́a-Bañuelos, L.: On the expressive

power of behavioral profiles. Formal Asp. Comput. 28(4), 597–613 (2016)

https://arxiv.org/abs/1801.00718
https://eprints.qut.edu.au/121158/

Comprehensive Process Drift Detection with Visual Analytics 15

21. Polyvyanyy, A., Weidlich, M., Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: The 4C
spectrum of fundamental behavioral relations for concurrent systems. In: Petri nets. pp. 210–
232. Springer (2014)

22. Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting concept drift in processes using graph metrics
on process graphs. In: S-BPM. p. 6 (2017)

23. Tsymbal, A.: The problem of concept drift: definitions and related work. Computer Science
Department, Trinity College Dublin 106(2), 58 (2004)

24. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models
from event logs. TKDE 16(9), 1128–1142 (2004)

25. Ware, C.: Information visualization: perception for design. Elsevier (2012)
26. Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs. In: OTM

CoopIS. pp. 524–542 (2017)

	Comprehensive Process Drift Detectionwith Visual Analytics
	Introduction
	Process Drift Analysis
	Motivating example
	Requirements

	Preliminaries
	Declare modeling and mining
	Clustering and change point detection algorithms
	Time series clustering
	Change point detection

	Technique
	Mining Declare windows
	Slicing the Declare constraints space into time and behavior sub-spaces
	Change point detection.
	Clustering time series of Declare constraints.

	Explaining drifts
	Finding erratic behavior clusters.
	Visual drift classification.

	Evaluation
	Evaluation setup
	Detecting drifts
	Synthetic data.
	Real-world data.

	Explaining drifts
	Discussion

	Conclusions

